Муниципальное образование Белоглинский район, с. Новопавловка, муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №16 имени Ф.Г. Шпака Белоглинского района»

УТВЕРЖДЕНО решением педагогического совета от 31.08.2023 года протокол №1 Председатель _____ Хрулева Л.В.

РАБОЧАЯ ПРОГРАММА

По астрономии

Уровень образования (класс) среднее общее образование ,10-11 классы Количество часов 34

Учитель Лахман Татьяна Федоровна

Программа разработана на основе ФГОС среднего общего образования; основной образовательной программы среднего общего образования МБОУ СОШ №16; программы «Астрономия 10-11» для общеобразовательных школ. Автор В.М.Чаругин, Просвещение, 2017

1.Планируемые результаты освоения учебного предмета

Личностными результатами освоения астрономии являются:

- умение управлять своей познавательной деятельностью;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- умение сотрудничать с взрослыми, сверстниками, детьми младшего возраста в образовательной, учебно-исследовательской, проектной и других видах деятельности;
- сформированность мировоззрения, соответствующего современному уровню развития науки; осознание значимости науки, владения достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки; заинтересованность в научных знаниях об устройстве мира и общества; готовность к научно-техническому творчеству;
- чувство гордости за отечественную космонавтику, гуманизм;
- положительное отношение к труду, целеустремлённость;
- экологическая культура, бережное отношение к родной земле, природным богатствам России, мира и космоса, понимание ответственности за состояние природных ресурсов и разумное природопользование.

Метапредметными результатами освоения астрономии являются:

- 1. освоение регулятивных универсальных учебных действий:
 - самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
 - оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
 - сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
 - определять несколько путей достижения поставленной цели;
 - задавать параметры и критерии, по которым можно определить, что цель достигнута;
 - сопоставлять полученный результат деятельности с поставленной заранее целью;
 - осознавать последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей;
- 2. освоение познавательных универсальных учебных действий:
 - критически оценивать и интерпретировать информацию с разных позиций;
 - распознавать и фиксировать противоречия в информационных источниках;
 - использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
 - осуществлять развёрнутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
 - искать и находить обобщённые способы решения задач;
 - приводить критические аргументы как в отношении собственного суждения, так и в отношении действий и суждений другого человека;
 - анализировать и преобразовывать проблемно-противоречивые ситуации;
 - выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;
 - выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
 - занимать разные позиции в познавательной деятельности (быть учеником и учителем; формулировать образовательный запрос и выполнять консультативные функции самостоятельно; ставить проблему и работать над её решением; управлять совместной познавательной деятельностью и подчиняться);
- 3. освоение коммуникативных универсальных учебных действий:

- осуществлять деловую коммуникацию как со сверстниками, так и с взрослыми (как внутри образовательной организации, так и за её пределами);
- при осуществлении групповой работы быть как руководителем, так и членом проектной команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т. д.);
- развёрнуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы;
- согласовывать позиции членов команды в процессе работы над общим продуктом (решением);
- представлять публично результаты индивидуальной и групповой деятельности как перед знакомой, так и перед незнакомой аудиторией;
- подбирать партнёров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;
- воспринимать критические замечания как ресурс собственного развития;
- точно и ёмко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

Предметными результатами освоения астрономии на базовом уровне являются:

- сформированность представлений о строении Солнечной системы, эволюции звёзд и Вселенной, пространственно-временных масштабах Вселенной;
- понимание сущности наблюдаемых во Вселенной явлений;
- владение основополагающими астрономическими понятиями, теориями, законами и закономерностями, уверенное пользование астрономической терминологией и символикой;
- сформированность представлений о значении астрономии в практической деятельности и дальнейшем научно-техническом развитии;
- осознание роли отечественной науки в освоении и использовании космического пространства и развития международного сотрудничества в этой области.

В результате изучения астрономии на базовом уровне ученик научится:

- описывать и объяснять: различия календарей, условия наступления солнечных и лунных затмений, фазы Луны, суточные движения светил, причины возникновения приливов и отливов; принцип действия оптического телескопа, взаимосвязь физико-химических характеристик звезд с использованием диаграммы «цвет-светимость», физические причины, определяющие равновесие звезд, источник энергии звезд и происхождение химических элементов, красное смещение с помощью эффекта Доплера;
- характеризовать особенности методов познания астрономии, основные элементы и свойства планет Солнечной системы, методы определения расстояний и линейных размеров небесных тел, возможные пути эволюции звезд различной массы;
- находить на небе основные созвездия Северного полушария, в том числе: Большая Медведица, Малая Медведица, Волопас, Лебедь, Кассиопея, Орион; самые яркие звезды, в том числе: Полярная звезда, Арктур, Вега, Капелла, Сириус, Бетельгейзе;
- использовать компьютерные приложения для определения положения Солнца, Луны и звезд на любую дату и время суток для данного населенного пункта;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- понимания взаимосвязи астрономии с другими науками, в основе которых лежат знания по астрономии, отделение ее от лженаук;
- оценивания информации, содержащейся в сообщениях СМИ, Интернете, научно-популярных статьях».

- Получать представления о структуре и масштабах Вселенной и месте человека в ней. Узнает о средствах, которые используют астрономы, чтобы заглянуть в самые удалённые уголки Вселенной и не только увидеть небесные тела в недоступных с Земли диапазонах длин волн электромагнитного излучения, но и узнать о новых каналах получения информации о небесных телах с помощью нейтринных и гравитационно-волновых телескопов.
- Узнает о наблюдаемом сложном движении планет, Луны и Солнца, их интерпретации. Какую роль играли наблюдения затмений Луны и Солнца в жизни общества и история их научного объяснения. Как на основе астрономических явлений люди научились измерять время и вести календарь.
- Узнает, как благодаря развитию астрономии люди перешли от представления геоцентрической системы мира к революционным представлениям гелиоцентрической системы мира. Как на основе последней были открыты законы, управляющие движением планет, и позднее, закон всемирного тяготения.
- На примере использования закона всемирного тяготения получит представления о космических скоростях, на основе которых рассчитываются траектории полётов космических аппаратов к планетам. Узнает, как проявляет себя всемирное тяготение на явлениях в системе Земля—Луна, и эволюцию этой системы в будущем.
- Узнает о современном представлении, о строении Солнечной системы, о строении Земли как планеты и природе парникового эффекта, о свойствах планет земной группы и планет-гигантов и об исследованиях астероидов, комет, метеоритов и нового класса небесных тел карликовых планет.
- Получит представление о методах астрофизических исследований и законах физики, которые используются для изучения физически свойств небесных тел.
- Узнает природу Солнца и его активности, как солнечная активность влияет на климат и биосферу Земли, как на основе законов физики можно рассчитать внутреннее строение Солнца и как наблюдения за потоками нейтрино от Солнца помогли заглянуть в центр Солнца и узнать о термоядерном источнике энергии.
- Узнает, как определяют основные характеристики звёзд и их взаимосвязь между собой, о внутреннем строении звёзд и источниках их энергии; о необычности свойств звёзд белых карликов, нейтронных звёзд и чёрных дыр. Узнать, как рождаются, живут и умирают звёзды.
- Узнает, как по наблюдениям пульсирующих звёзд цефеид определять расстояния до других галактик, как астрономы по наблюдениям двойных и кратных звёзд определяют их массы.
- Получит представления о взрывах новых и сверхновых звёзд и узнать, как в звёздах образуются тяжёлые химические элементы.
- Узнает, как устроена наша Галактика Млечный Путь, как распределены в ней рассеянные и шаровые звёздные скопления и облака межзвёздного газа и пыли. Как с помощью наблюдений в инфракрасных лучах удалось проникнуть через толщу межзвёздного газа и пыли в центр Галактики, увидеть движение звёзд в нём вокруг сверхмассивной чёрной дыры.
- Получит представление о различных типах галактик, узнать о проявлениях активности галактик и квазаров, распределении галактик в пространстве и формировании скоплений и ячеистой структуры их распределения.
- Узнает о строении и эволюции уникального объекта Вселенной в целом. Проследить за развитием представлений о конечности и бесконечности Вселенной, о фундаментальных парадоксах, связанных с ними.
- Поймет, как из наблюдаемого красного смещения в спектрах далёких галактик пришли к выводу о нестационарности, расширении Вселенной, и, что в прошлом она была не только плотной, но и горячей и, что наблюдаемое реликтовое излучение подтверждает этот важный вывод современной космологии.
- Узнает, как открыли ускоренное расширение Вселенной и его связью с тёмной энергией и всемирной силой отталкивания, противостоящей всемирной силе тяготения.
- Узнать об открытии экзопланет планет около других звёзд и современном состоянии проблемы поиска внеземных цивилизаций и связи с ними.

• Научится проводить простейшие астрономические наблюдения, ориентироваться среди ярких звёзд и созвездий, измерять высоты звёзд и Солнца, определять астрономическими методами время, широту и долготу места наблюдений, измерять диаметр Солнца и измерять солнечную активность и её зависимость от времени.

2. Содержание учебного предмета

Введение в астрономию (1 ч)

Строение и масштабы Вселенной. Какие тела заполняют Вселенную. Каковы их характерные размеры и расстояния между ними. Какие физические условия встречаются в них. Вселенная расширяется. Современные методы наблюдений. Где и как работают самые крупные оптические телескопы. Как астрономы исследуют гамма-излучение Вселенной. Что увидели гравитационно-волновые и нейтринные телескопы.

Астрометрия (5 ч)

Звёздное небо. Созвездия северного полушария. Навигационные звёзды. Движение Солнца по эклиптике. Петлеобразное движение планет. Небесный экватор и небесный меридиан. Экваториальная и горизонтальная система небесных координат. Видимое движение небесных светил. Петлеобразное движение планет, попятное и прямое движение планет. Эклиптика, зодиакальные созвездия. Неравномерное движение Солнца по эклиптике. Движение Луны. Фазы Луны и синодический месяц, условия наступления солнечного и лунного затмений. Причины наступления солнечных затмений. Сарос и предсказания затмений. Время и календарь. Звёздное и солнечное время, звёздный и тропический год. Устройство лунного и солнечного календаря, проблемы их согласования. Юлианский и григорианский календари.

Небесная механика (3 ч)

Представления о строении Солнечной системы в античные времена и в средневековье. Гелиоцентрическая система мира, доказательство вращения Земли вокруг Солнца. Параллакс звёзд и определение расстояния до них, парсек. Открытие И.Кеплером законов движения планет. Открытие закона всемирного тяготения и обобщённые законы Кеплера. Определение масс небесных тел. Космические скорости. Расчёты первой и второй космической скорости и их физический смысл. Полёт Ю.А. Гагарина вокруг Земли по круговой орбите. Межпланетные перелёты. Понятие оптимальной траектории полёта к планете. Время полёта к планете и даты стартов. Луна и её влияние на Землю. Лунный рельеф и его природа. Приливное взаимодействие между Луной и Землёй. Удаление Луны от Земли и замедление вращения Земли. Прецессия земной оси и предварение равноденствий.

Строение солнечной системы (7 ч)

Современные представления о Солнечной системе. Состав Солнечной системы. Планеты земной группы и планеты-гиганты, их принципиальные различия. Облако комет Оорта и Пояс Койпера. Размеры тел солнечной системы.Планета Земля. Форма и размеры Земли. Внутреннее строение Земли. Рольпарникового эффекта в формировании климата Земли.Исследования Меркурия, Венеры и Марса, их схожесть с Землёй. Влияние парникового эффекта на климат Земли и Венеры. Есть ли жизнь на Марсе. Эволюция орбитспутников Марса Фобоса и Деймоса.Планеты-гиганты. Физические свойства Юпитера, Сатурна, Урана и Нептуна.Вулканическая деятельность на спутнике Юпитера Ио. Природа колецвокруг планет-гигантов.Планеты-карлики и их свойства.Малые тела Солнечной системы. Природа и движение астероидов. Специфика движения группастероидов Троянцев и Греков. Природа и движение комет. ПоясКойпера и Облако комет Оорта.Метеоры и метеориты. Природа падающих звёзд, метеорные потоки и их радианты. Связьмежду метеорными потоками и кометами. Природа каменных ижелезных метеоритов. Природа метеоритных кратеров.

Астрофизика и звёздная астрономия (7 ч)

Методы астрофизических исследований. Устройство и характеристики телескопов рефракторов и рефлекторов. Устройство радиотелескопов, радиоинтерферометры. Солнце. Основные характеристики Солнца. Определение массы, температурыи химического состава Солнца. Строение солнечной атмосферы.Солнечная активность и её влияние на Землю и биосферу. Внутреннее строение Солнца. Теоретический расчёт температуры в центре Солнца. Ядерныйисточник энергии и термоядерные реакции синтеза гелия из водорода,перенос энергии из центра Солнца наружу, конвективная зона. Нейтринный телескоп и наблюдения потока нейтрино от Солнца. Определение основных характеристик звёзд: массы, светимости, температуры и химического состава. Спектральная классификациязвёзд и её физические основы. Диаграмма "спектральный класс-светимость" звёзд, связь между массой и светимостью звёзд.Внутреннее строение звёзд. Строение звезды главной последовательности. Строение звёзд красных гигантов и сверхгигантов. Строение звёзд белых карликов и предел на их массу – предел Чандрасекара. Пульсары и нейтронные звёзды. Природа чёрных дыр иих параметры. Двойные, кратные и переменные звёзды. Наблюдения двойных и кратных звёзд. Затменно-переменные звёзды. Определение масс двойных звёзд. Пульсирующие переменные звёзды, кривые изменения блеска цефеид. Зависимость между светимостью ипериодом пульсаций у цефеид. Цефеиды – маяки во Вселенной, покоторым определяют расстояния до далёких скоплений и галактик. Новые и сверхновые звёзды. Характеристики вспышек новых звёзд. Связь новых звёзд с теснымидвойными системами, содержащими звезду белый карлик. Перетекание вещества и ядерный взрыв на поверхности белогокарлика. Как взрываются сверхновые звёзды. Характеристикивспышек сверхновых звёзд. Гравитационный коллапс белого карликас массой Чандрасекара в составе тесной двойной звезды – вспышкасверхновой I типа. Взрыв массивной звезды в конце своейэволюции – взрыв сверхновой II типа. Наблюдение остатковвзрывов сверхновых звёзд. Эволюция звёзд: рождение, жизнь и смерть звёзд. Расчёт продолжительности жизни звёзд разной массы на главнойпоследовательности. Переход в красные гиганты и сверхгигантыпосле исчерпания водорода. Спокойная эволюция маломассивных звёзд и гравитационный коллапс и взрыв с образованием нейтроннойзвезды или чёрной дыры массивной звезды. Определение возрастазвёздных скоплений и отдельных звёзд, проверка теории эволюциизвёзд.

Млечный Путь (3 ч)

Газ и пыль в Галактике. Образование отражательных туманностей. Причины свечениядиффузных туманностей. Концентрация газовых и пылевых туманностей в Галактике. Рассеянные и шаровые звёздные скопления. Наблюдаемые свойства рассеянных звёздных скоплений. Распределение характер движения скоплений в Галактике. Распределение звёзд, скоплений, газа и пыли в Галактике. Сверхмассивная чёрная дыра в центре Галактики и космические лучи. Инфракрасные наблюдения движения звёзд в центре Галактики иобнаружение в центре Галактики сверхмассивной черной дыры. Расчёт параметров сверхмассивной чёрной дыры. Наблюдения космических лучей и их связь с взрывами сверхновых звёзд.

Галактики(3 ч)

Классификация галактик по форме и камертонная диаграммаХаббла. Свойства спиральных, эллиптических и неправильныхгалактик. Красное смещение в спектрах галактик и определениерасстояния до них.ЗаконХаббла. Вращение галактик и тёмная материя в них.Активные галактики и квазары. Природа активности галактик, радиогалактики и взаимодействующие-галактики. Необычные свойства квазаров, их связь с ядрами галактики активностью чёрных дыр в них.Наблюдаемые свойства скоплений галактик, рентгеновское излучение, температура и масса межгалактического газа, необходимостьсуществования тёмной материи в скоплениях галактик. Оценка массытёмной материи в скоплениях. Ячеистая структура распределениягалактики скоплений галактик.

Строение и эволюция Вселенной (2 ч)

Конечность и бесконечность Вселенной – парадоксыклассической космологии.Закон всемирного тяготения и представления о конечности ибесконечности Вселенной. Фотометрический парадокс ипротиворечия между классическими представлениями о строенииВсе-

ленной и наблюдениями. Необходимость привлечения общейтеории относительности для построения модели Вселенной. Связьмежду геометрических свойств пространства Вселенной сраспределением и движением материи в ней. Расширяющаяся Вселенная. Связь средней плотности материи с законом расширения игеометрическими свойствами Вселенной. Евклидова и неевклидовагеометрия Вселенной. Определение радиуса и возраста Вселенной. Модель "горячей Вселенной" и реликтовое излучение. Образование химических элементов во Вселенной. Обилие гелия воВселенной и необходимость образования его на ранних этапахэволюции Вселенной. Необходимость не только высокой плотностивещества, но и его высокой температуры на ранних этапах эволюцииВселенной. Реликтовое излучение — излучение, которое осталось воВселенной от горячего и сверхплотного состояния материи на раннихэтапах жизни Вселенной. Наблюдаемые свойства реликтовогоизлучения. Почему необходимо привлечение общей теорииотносительности для построения модели Вселенной.

Современные проблемы астрономии – 3 ч

Солнца по эклиптике. Петлеобразное дви-

жение планет. Небесный экватор и небесный меридиан. Экваториальная и горизон-

тальная система небесных координат. Ви-

димое движение небесных светил. Петлеобразное движение планет, попятное и

Ускоренное расширение Вселенной и тёмная энергия. Наблюдения сверхновых звёзд I типа в далёких галактиках и открытиеускоренного расширения Вселенной. Открытие силы всемирногоотталкивания. Тёмная энергия и её влияние на массу Вселенной по мерееё расширения. Природа Всемирного отталкивания. Обнаружение возле силы планет других звёзд. Наблюдения за движением звёзд и определения масс невидимыхспутников звёзд, возмущающих их прямолинейное движение. Методы обнаружения экзопланет. Оценка условий на поверхностяхэкзопланет. Поиск экзопланет с комфортными условиями для жизнина них. Поиски жизни и разума во Вселенной. Развитие представлений о возникновении и существовании жизни воВселенной. Современные оценки количества высокоразвитыхцивилизаций в Галактике. Попытки обнаружения и посылки сигналоввнеземным цивилизациям.

3. Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы:

Тема, содержание Характеристика основных видов деятельности учащихся Введение в астрономию(1ч) узнать, что изучает астрономия; Строение и масштабы Вселенной. Какие роль наблюдений в астрономии; тела заполняют Вселенную. Каковы их характерные размеры и расстояния между значение астрономии; ними. Какие физические условия встречачто такое Вселенная; ются в них. Вселенная расширяется. Современные методы наблюдений. Где и как структура и масштабыВселенной работают самые крупные оптические телескопы. Как астрономы исследуют гаммаизлучение Вселенной. Что увидели гравитационно-волновые и нейтринные телескопы. Узнать, что такоесозвездие; названия некото-Астрометрия (5 ч) рых созвездий, их конфигурацию, альфукаж-Звёздное небо. Созвездия северного полушария. Навигационные звёзды. Движение дого из этих созвездий; основные точки, ли-

нии икруги на небеснойсфере:горизонт, по-

луденнаялиния, небесныймеридиан, небес-

ныйэкватор, эклиптика, зенит, полюсмира,

осьмира, точки равноденствий и солнцестоя-

прямое движение планет. Эклиптика, зодиакальные созвездия. Неравномерное движение Солнца по эклиптике. Движение Луны. Фазы Луны и синодический месяц, условия наступления солнечного и лунного затмений. Причины наступления солнечных затмений. Сарос и предсказания затмений. Время и календарь. Звёздное и солнечное время, звёздный и тропический год. Устройство лунного и солнечного календаря, проблемы их согласования. Юлианский и григорианский календари.

ний; теорему о высоте полюсамира надгоризонтом; основные понятиясферической и практическойастрономии: кульминация ивысота светила над горизонтом;прямое восхождение и склонение; сутки; отличие между новым и старымстилями; величины: угловые размеры Луныи Солнца;даты равноденствий и солнцестояний;

- угол наклона эклиптикик экватору; соотношения междумерами и мерами времени для измеренияуглов; продолжительностьгода; число звёзд, видимых невооружённымвзглядом; принципы определения географической широтыи долготы по астрономическим наблюдениям; причины и характер видимого движения звезд и Солнца, а также годичного движения Солнца
- использовать подвижную звёздную карту для решения следующих задач: а) определять координаты звёзд, нанесённых на карту; б) по заданным координатам объектов (Солнце, Луна, планеты) наносить их положение на карту; в) устанавливать карту на любую дату и время суток, ориентировать её иопределять условия видимости светил.
- Решать задачи на связьвысоты светила в кульминации с географической широтой места наблюдения; определять высоту светилав кульминации и его склонение; географическую высоту места наблюдения; рисовать чертёж в соответствии с условиями задачи; осуществлять переход к разным системам счетавремени, находить стороны света по Полярной звезде и полуденному Солнцу;
- отыскивать на небеследующие созвездия и наиболееяркие звёзды в них:Большую Медведицу, Малую Медведицу

(с Полярнойзвездой), Кассиопею, Лиру (сВегой), Орёл (сАльтаиром), Лебедь (сДенебом), Возничий (сКапеллой), Волопас (сАрктуром), Севернуюкорону, Орион (сБетельгейзе), Телец (сАльдебараном), Большой Пёс (с Сириусом).

Небесная механика (3 ч)

Представления о строении Солнечной системы в античные времена и в средневековье. Гелиоцентрическая система мира, доказательство вращения Земли вокруг Солнца. Параллакс звёзд и определение расстояния до них, парсек. Открытие И.Кеплером законов движения планет. Открытие закона всемирного тяготения и обобщённые законы Кеплера. Определение масс небесных тел. Космические скорости. Расчёты первой и второй космической скорости и их физический смысл. Полёт Ю.А. Гагарина вокруг Земли по круговой орбите. Межпланетные перелёты. Понятие оптимальной траектории полёта к планете. Время полёта к планете и даты стартов. Луна и её влияние на Землю. Лунный рельеф и его природа. Приливное взаимодействие между Луной и Землёй. Удаление Луны от Земли и замедление вращения Земли. Прецессия земной оси и предварение равноденствий.

Строение солнечной системы (7 ч)

Современные представления о Солнечной системе. Состав Солнечной системы. Планеты земной группы и планеты-гиганты, их принципиальные различия. Облако комет Оорта и Пояс Койпера. Размеры тел солнечной системы. Планета Земля. Форма и размеры Земли. Внутреннее строение Земли. Роль парникового эффекта в формировании климата Земли. Исследования Меркурия, Венеры и Марса, их схожесть с Землёй. Влияние парникового эффекта на климат Земли и Венеры. Есть ли жизнь на Марсе. Эволюция орбит спутников Марса Фобоса и Деймоса. Планеты-гиганты. Физические свойства Юпитера, Сатурна, Урана и Нептуна. Вулканическая деятельность на спутнике Юпитера Ио. Природа колец вокруг планет-гигантов. Планетыкарлики и их свойства. Малые тела Сол-

- Гелиоцентрическаясистема мира; геоцентрическаясистема мира; синодический период;
- звёздныйпериод; горизонтальныйпараллакс; угловые размерысветил; перваякосмическая скорость; втораякосмическая скорость;
- способы определенияразмеров и массыЗемли; способы определения расстояний до небесных тел и их масс по законуКеплера;
- законы Кеплера и их связь с закономтяготения
- применять законы Кеплераи закон всемирного тяготения при объяснении движения планет и космических аппаратов; решать задачи нарасчёт расстояний по известному параллаксу (и наоборот), линейных и угловых размеров небесных тел, расстояний планет от Солнца и периодов их обращения по третьему закону Кеплера.
- Происхождение Солнечной системы;
- основные закономерности в Солнечнойсистеме; космогонические гипотезы;
- системаЗемля–Луна; основные движения-Земли; формаЗемли; природаЛуны;
- общая характеристикапланет земной группы (атмосфера, поверхность);
- общая характеристика планет- гигантов(атмосфера; поверхность);
- спутники и кольца планет- гигантов; астероиды иметеориты; поясастероидов;кометы иметеоры
- решать задачи на расчёт расстояний по известному параллаксу (и наоборот), линейных и угловых размеров небесных тел, расстоя-

нечной системы. Природа и движение астероидов. Специфика движения групп астероидов Троянцев и Греков. Природа и движение комет. Пояс Койпера и Облако комет Оорта. Метеоры и метеориты. Природа падающих звёзд, метеорные потоки и их радианты. Связь между метеорными потоками и кометами. Природа каменных и железных метеоритов. Природа метеоритных кратеров.

Астрофизика и звёздная астрономия (7 ч)

Методы астрофизических исследований. Устройство и характеристики телескопов рефракторов и рефлекторов. Устройство радиотелескопов, радиоинтерферометры. Солнце. Основные характеристики Солнца. Определение массы, температуры и химического состава Солнца. Строение солнечной атмосферы. Солнечная активность и её влияние на Землю и биосферу. Внутреннее строение Солнца. Теоретический расчёт температуры в центре Солнца. Ядерный источник энергии и термоядерные реакции синтеза гелия из водорода, перенос энергии из центра Солнца наружу, конвективная зона. Нейтринный телескоп и наблюдения потока нейтрино от Солнца. Определение основных характеристик звёзд: массы, светимости, температуры и химического состава. Спектральная классификация звёзд и её физические основы. "спектральный Диаграмма светимость" звёзд, связь между массой и светимостью звёзд. Внутреннее строение звёзд. Строение звезды главной последовательности. Строение звёзд красных гигантов и сверхгигантов. Строение звёзд белых карликов и предел на их массу -Чандрасекара. предел Пульсары нейтронные звёзды. Природа чёрных дыр и их параметры. Двойные, кратные и переменные звёзды. Наблюдения двойных и кратных звёзд. Затменно-переменные звёзды. Определение масс двойных звёзд. Пульсирующие переменные звёзды, кривые изменения блеска цефеид. Зависимость между светимостью и периодом пульсаций у цефеид. Цефеиды – маяки во Вселенной, по которым определяют расстояния до далёких скоплений и галактик. Новые и сверхновые звёзды. Характеристики вспышек новых звёзд. Связь новых

ний планет от Солнца и периодов их обращения по третьему закону Кеплера. Пользоватьсяпланом Солнечной системы и справочными данными; определять по астрономическому календарю, какие планеты и в каких созвездиях видны на небев данное время; -находить планеты на небе, отличая их от звёзд; применять законы Кеплера и закон всемирного тяготенияпри объяснении движения планет и космических аппаратов.

На примере использования закона всемирного тяготения получить представления о космических скоростях, на основе которых

рассчитываются траектории полётов космических аппаратов к планетам. Узнать, как проявляет себя всемирное тяготение на

явлениях в системе Земля—Луна, и эволюцию этой системы в будущем.

- Узнать о современном представлении, о строении Солнечной системы, о строении Земли как планеты и природе парникового эффекта, о свойствах планет земной группы и пла-
- эффекта, о своиствах планет земной группы и планет-гигантов и об исследованиях астероидов, комет, метеороидов и нового класса

небесных тел карликовых планет.

- Получить представление о методах астрофизических исследований и законах физических, которые используются для изучения
- физически свойств небесных тел.
- Узнать природу Солнца и его активности, как солнечная активность влияет на климат и биосферу Земли, как на основе законов физики можно рассчитать внутреннее строение Солнца и как наблюдения за потоками нейтрино от

Солнца помогли заглянуть в центр Солнца и узнать о термоядерном источнике энергии.

- Узнать, как определяют основные характеристики звёзд и их взаимосвязь между собой, о внутреннем строении звёзд и источниках
- их энергии; о необычности свойств звёзд белых карликов, нейтронных звёзд и чёрных дыр. Узнать, как рождаются, живут и умирают звёзды.
- Узнать, как по наблюдениям пульсирующих звёзд цефеид определять расстояния до других галактик, как астрономы по

наблюдениям двойных и кратных звёзд определяют их массы.

- Получить представления о взрывах новых и сверхновых звёзд и узнать как в звёздах образуются тяжёлые химические элементы.
- Узнать, как устроена наша Галактика Млечный Путь, как распределены в ней рассеянные и шаровые звёздные скопления и

звёзд с тесными двойными системами, содержащими звезду белый карлик. Перетекание вещества и ядерный взрыв на поверхности белого карлика. Как взрываются сверхновые звёзды. Характеристики вспышек сверхновых звёзд. Гравитационный коллапс белого карлика с массой Чандрасекара в составе тесной двойной звезды вспышка сверхновой I типа. Взрыв массивной звезды в конце своей эволюции взрыв сверхновой II типа. Наблюдение остатков взрывов сверхновых звёзд. Эволюция звёзд: рождение, жизнь и смерть звёзд. Расчёт продолжительности жизни звёзд разной массы на главной последовательности. Переход в красные гиганты и сверхгиганты после исчерпания водорода. Спокойная эволюция маломассивных звёзд и гравитационный коллапс и взрыв с образованием нейтронной звезды или чёрной дыры массивной звезды. Определение возраста звёздных скоплений и отдельных звёзд, проверка теории эволюции звёзд.

облака межзвёздного газа и пыли. Как с помощью наблюдений в инфракрасных лучах удалось проникнуть через толщу межзвёздного

газа и пыли в центр Галактики, увидеть движение звёзд в нём вокругсверхмассивной чёрной дыры.

- Получить представление о различных типах галактик, узнать опроявлениях активности галактик и квазаров, распределении галактик в пространстве и формировании скоплений и ячеистой структуры ихраспределения.
- Узнать о строении и эволюции уникального объекта Вселеннойв целом. Проследить за развитием представлений о конечности и бесконечности Вселенной, о фундаментальных парадоксах, связанных с ними.
- Понять, как из наблюдаемого красного смещения в спектрахдалёких галактик пришли к выводу о нестационарности, расширении Вселенной, и, что в прошлом она была не только плотной, но игорячей и, что наблюдаемое реликтовое излучение подтверждает этот важный вывод современной космологии.
- Узнать, как открыли ускоренное расширение Вселенной и егосвязью с тёмной энергией и всемирной силой отталкивания,

противостоящей всемирной силе тяготения.

- Узнать об открытии экзопланет планет около других звёзд исовременном состоянии проблемы поиска внеземных цивилизаций и связи с ними.
- Научиться проводить простейшие астрономическиенаблюдения, ориентироваться среди ярких звёзд и созвездий, измерять высоты звёзд и Солнца, определять астрономическимиметодами время, широту и долготу места наблюдений, измерять

диаметр Солнца и измерять солнечную активность и её зависимость от времени.

Млечный Путь (3 ч)

Газ и пыль в Галактике. Образование отражательных туманностей. Причины свечения диффузных туманностей. Концентрация газовых и пылевых туманностей в Галактике. Рассеянные и шаровые звёздные скопления. Наблюдаемые свойства рассеянных звёздных скоплений. Наблюдаемые свойства шаровых звёздных скоплений. Распределение и характер движения скоплений в Галактике. Распределение звёзд, скоплений, газа и пыли в Галактике. Сверхмассивная чёрная дыра в центре Галактики и космические лучи. Инфракрасные наблюдения движения звёзд в центре

- Узнать о наблюдаемом сложном движении планет, Луны и Солнца, их интерпретации. Какую роль играли наблюдения затмений
- Луны и Солнца в жизни общества и история их научного объяснения. Как на основе астрономических явлений люди научились измерять время и вести календарь.
- Узнать, как благодаря развитию астрономии люди перешли от представления геоцентрической системы мира к революционным представлениям гелиоцентрической системы мира.

Как на основе последней были открыты законы, управляющие движением планет, и позднее, закон всемирного тяготения.

• На примере использования закона всемирного тяготения получить представления о космических

Галактики и обнаружение в центре Галактики сверхмассивной черной дыры. Расчёт параметров сверхмассивной чёрной дыры. Наблюдения космических лучей и их связь с взрывами сверхновых звёзд.

скоростях, на основе которых рассчитываются траектории полётов космических аппаратов к планетам. Узнать, как проявляет себя всемирное тяготение на явлениях в системе Земля—Луна, и эволюцию этой системы в будущем.

- Узнать о современном представлении, о строении Солнечной системы, о строении Земли как планеты и природе парникового эффекта, о свойствах планет земной группы и планет-гигантов и об исследованиях астероидов, комет, метеороидов и нового класса небесных тел карликовых планет.
- Получить представление о методах астрофизических исследований и законах физических, которые используются для изучения физически свойств небесных тел.
- Узнать природу Солнца и его активности, как солнечная активность влияет на климат и биосферу Земли, как на основе законов физики можно рассчитать внутреннее строение Солнца и как наблюдения за потоками нейтрино от Солнца помогли заглянуть в центр Солнца и узнать о термоядерном источнике энергии.
- Узнать, как определяют основные характеристики звёзд и их взаимосвязь между собой, о внутреннем строении звёзд и источниках их энергии; о необычности свойств звёзд белых карликов, нейтронных звёзд и чёрных дыр. Узнать, как рождаются, живут и умирают звёзды.
- Узнать, как по наблюдениям пульсирующих звёзд цефеид определять расстояния до других галактик, как астрономы по наблюдениям двойных и кратных звёзд определяют их массы.
- Получить представления о взрывах новых и сверхновых звёзд и узнать как в звёздах образуются тяжёлые химические элементы.
- Узнать, как устроена наша Галактика Млечный Путь, как распределены в ней рассеянные и шаровые звёздные скопления и облака межзвёздного газа и пыли. Как с помощью наблюдений в инфракрасных лучах удалось проникнуть через толщу межзвёздного газа и пыли в центр Галактики, увидеть движение звёзд в нём вокругсверхмассивной чёрной дыры.
- Получить представление о различных типах галактик, узнать опроявлениях активности галактик и квазаров, распределении галактик в пространстве и формировании скоплений и ячеистой структуры ихраспределения.
- Узнать о строении и эволюции уникального объекта Вселеннойв целом. Проследить за развитием представлений о конечности и

Галактики (3 ч) Классификация галактик по форме и камертонная диаграмма Хаббла. Свойства спиральных, эллиптических и неправильных галактик. Красное смещение в спектрах галактик и определение расстояния до них. Закон Хаббла. Вращение галактик и тёмная материя в них. Активные галактики и квазары. Природа активности галактик, радиогалактики и взаимодействующие галактики. Необычные свойства квазаров, их связь с ядрами галактик и активностью чёрных дыр в них. Наблюдаемые свойства скоплений галактик, рентгеновское излучение, температура и масса межгалактического газа, необходимость существования тёмной материи в скоплениях галактик. Оценка массы тёмной материи в скоплениях. Ячеистая структура распределения галактики скоплений галактик.

бесконечности Вселенной, о фундаментальных парадоксах, связанных с ними.

- Понять, как из наблюдаемого красного смещения в спектрахдалёких галактик пришли к выводу о нестационарности, расширении Вселенной, и, что в прошлом она была не только плотной, но игорячей и, что наблюдаемое реликтовое излучение подтверждает этот
- Узнать, как открыли ускоренное расширение Вселенной и егосвязью с тёмной энергией и всемирной силой отталкивания,

противостоящей всемирной силе тяготения.

важный вывод современной космологии.

- Узнать об открытии экзопланет планет около других звёзд исовременном состоянии проблемы поиска внеземных цивилизаций и связи с ними.
- Научиться проводить простейшие астрономическиенаблюдения, ориентироваться среди ярких звёзд и созвездий,
- измерять высоты звёзд и Солнца, определять астрономическимиметодами время, широту и долготу места наблюдений, измерять диаметр Солнца и измерять солнечную активность и её зависимость от времени.
- Узнать о наблюдаемом сложном движении планет, Луны и Солнца, их интерпретации. Какую роль играли наблюдения затмений Луны и Солнца в жизни общества и история их
- научного объяснения. Как на основе астрономических явлений люди научились измерять время и вести календарь.
- Узнать, как благодаря развитию астрономии люди перешли от представления геоцентрической системы мира к революционным представлениям гелиоцентрической системы мира. Как на основе последней были открыты законы, управляющие движением планет, и позднее, закон всемирного тяготения.
- На примере использования закона всемирного тяготения получить представления о космических скоростях, на основе которых рассчитываются траектории полётов космических аппаратов к планетам. Узнать, как проявляет себя всемирное тяготение на явлениях в системе Земля—Луна, и эволюцию этой системы в будущем.
- Узнать о современном представлении, о строении Солнечной системы, о строении Земли как планеты и природе парникового эффекта, о свойствах планет земной группы и планет-гигантов и об исследованиях астероидов, комет, метеороидов и нового класса небесных тел карликовых планет.
- Получить представление о методах астрофизиче-

ских исследований и законах физических, которые используются для изучения физически свойств небесных тел.

- Узнать природу Солнца и его активности, как солнечная активность влияет на климат и биосферу Земли, как на основе законов физики можно рассчитать внутреннее строение Солнца и как наблюдения за потоками нейтрино от Солнца помогли заглянуть в центр Солнца и узнать о термоядерном источнике энергии.
- Узнать, как определяют основные характеристики звёзд и их взаимосвязь между собой, о внутреннем строении звёзд и источниках их энергии; о необычности свойств звёзд белых карликов, нейтронных звёзд и чёрных дыр. Узнать, как рождаются, живут и умирают звёзды.
- Узнать, как по наблюдениям пульсирующих звёзд цефеид определять расстояния до других галактик, как астрономы по наблюдениям двойных и кратных звёзд определяют их массы.
- Получить представления о взрывах новых и сверхновых звёзд и узнать как в звёздах образуются тяжёлые химические элементы.
- Узнать, как устроена наша Галактика Млечный Путь, как распределены в ней рассеянные и шаровые звёздные скопления и облака межзвёздного газа и пыли. Как с помощью наблюдений в инфракрасных лучах удалось проникнуть через толщу межзвёздного газа и пыли в центр Галактики, увидеть движение звёзд в нём вокругсверхмассивной чёрной дыры.
- Получить представление о различных типах галактик, узнать опроявлениях активности галактик и квазаров, распределении галактик в пространстве и формировании скоплений и ячеистой структуры ихраспределения.
- Узнать о строении и эволюции уникального объекта Вселеннойв целом. Проследить за развитием представлений о конечности и бесконечности Вселенной, о фундаментальных парадоксах, связанных с ними.
- Понять, как из наблюдаемого красного смещения в спектрахдалёких галактик пришли к выводу о нестационарности, расширении Вселенной, и, что в прошлом она была не только плотной, но игорячей и, что наблюдаемое реликтовое излучение подтверждает этот важный вывод современной космологии.
- Узнать, как открыли ускоренное расширение Вселенной и егосвязью с тёмной энергией и всемирной силой отталкивания, противостоящей всемирной силе тяготения.
- Узнать об открытии экзопланет планет около

других звёзд исовременном состоянии проблемы поиска внеземных цивилизаций и связи с ними.

• Научиться проводить простейшие астрономическиенаблюдения, ориентироваться среди ярких звёзд и созвездий,

измерять высоты звёзд и Солнца, определять астрономическимиметодами время, широту и долготу места наблюдений, измерять

диаметр Солнца и измерять солнечную активность и её зависимость от времени.

Выпускник на углубленном уровне научится:

- формулировать научную гипотезу, ставить цель в рамках исследования и проектирования, исходя из культурной нормы и сообразуясь с представлениями об общем благе;
- восстанавливать контексты и пути развития того или иного вида научной деятельности, определяя место своего исследования или проекта в общем культурном пространстве;
- отслеживать и принимать во внимание тренды и тенденции развития различных видов деятельности, в том числе научных, учитывать их при постановке собственных целей;
- оценивать ресурсы, в том числе и нематериальные, такие как время, необходимые для достижения поставленной цели;
- находить различные источники материальных и нематериальных ресурсов, предоставляющих средства для проведения исследований и реализации проектов в различных областях деятельности человека;
- вступать в коммуникацию с держателями различных типов ресурсов, точно и объективно презентуя свой проект или возможные результаты исследования, с целью обеспечения продуктивного взаимовыгодного сотрудничества;
- самостоятельно и совместно с другими авторами разрабатывать систему параметров и критериев оценки эффективности и продуктивности реализации проекта или исследования на каждом этапе реализации и по завершении работы;
- адекватно оценивать риски реализации проекта и проведения исследования и предусматривать пути минимизации этих рисков;
- адекватно оценивать последствия реализации своего проекта (изменения, которые он повлечет и жизни других людей, сообществ);
- адекватно оценивать дальнейшее развитие своего проекта или исследования, видеть возможные варианты применения результатов.

Строение и эволюция Вселенной (2 ч)

Конечность и бесконечность Вселенной паралоксы классической космологии. Закон всемирного тяготения и представления о конечности и бесконечности Вселенной. Фотометрический парадокс и противоречия между классическими представлениями о строении Вселенной и наблюдениями. Необходимость привлечения общей теории относительности для построения модели Вселенной. Связь между геометрических свойств пространства Вселенной с распределением и движением материи в ней. Расширяющаяся Вселенная. Связь средней плотности материи с законом расширения и геометрическими свойствами Вселенной. Евклидова и неевклидова геометрия Вселенной. Определение радиуса и возраста Вселенной. Модель "горячей Вселенной" и реликтовое излучение. Образование химических элементов во Вселенной. Обилие гелия во Вселенной и необходимость образования его на ранних этапах эволюции Вселенной. Необходимость не только высокой плотности вещества, но и его высокой температуры на ранних этапах эволюции Вселенной. Реликтовое излучение – излучение, которое осталось во Вселенной от горячего и сверхплотного состояния материи на ранних этапах жизни Вселенной. Наблюдаемые свойства реликтового излучения. Почему необходимо привлечение общей теории относительности для построения модели Вселенной.

- Узнать о наблюдаемом сложном движении планет, Луны и Солнца, их интерпретации. Какую роль играли наблюдения затмений
- Луны и Солнца в жизни общества и история их научного объяснения. Как на основе астрономических явлений люди научились измерять время и вести календарь.
- Узнать, как благодаря развитию астрономии люди перешли от представления геоцентрической системы мира к революционным представлениям гелиоцентрической системы мира. Как на основе последней были открыты законы, управляющие движением планет, и позднее, закон всемирного тяготения.
- На примере использования закона всемирного тяготения получить представления о космических скоростях, на основе которых рассчитываются траектории полётов космических аппаратов к планетам. Узнать, как проявляет себя всемирное тяготение на явлениях в системе Земля—Луна, и эволюцию этой системы в будущем.
- Узнать о современном представлении, о строении Солнечной системы, о строении Земли как планеты и природе парникового эффекта, о свойствах планет земной группы и планет-гигантов и об исследованиях астероидов, комет, метеороидов и нового класса небесных тел карликовых планет.
- Получить представление о методах астрофизических исследований и законах физических, которые используются для изучения физически свойств небесных тел.
- Узнать природу Солнца и его активности, как солнечная активность влияет на климат и биосферу Земли, как на основе законов физики можно рассчитать внутреннее строение Солнца и как наблюдения за потоками нейтрино от Солнца помогли заглянуть в центр Солнца и узнать о термоядерном источнике энергии.
- Узнать, как определяют основные характеристики звёзд и их взаимосвязь между собой, о внутреннем строении звёзд и источниках их энергии; о необычности свойств звёзд белых карликов, нейтронных звёзд и чёрных дыр. Узнать, как рождаются, живут и умирают звёзды.
- Узнать, как по наблюдениям пульсирующих звёзд цефеид определять расстояния до других галактик, как астрономы по наблюдениям двойных и кратных звёзд определяют
- их массы. • Получить представления о взрывах новых и сверх-
- новых звёзд и узнать как в звёздах образуются тяжёлые химические элементы.

• Узнать, как устроена наша Галактика — Млечный Путь, как распределены в ней рассеянные и шаровые звёздные скопления и облака межзвёздного газа и пыли. Как с помощью наблюдений в инфракрасных лучах удалось проникнуть через толщу межзвёздного газа и пыли в центр Галактики, увидеть движение звёзд в нём вокругсверхмассивной чёрной дыры. • Получить представление о различных типах галактик, узнать опроявлениях активности галактик и квазаров, распределении галактик в пространстве и формировании скоплений и ячеистой структуры ихраспределения.

Современные проблемы астрономии – 3 ч

Ускоренное расширение Вселенной и тёмная энергия. Наблюдения сверхновых звёзд I типа в далёких галактиках и открытие ускоренного расширения Вселенной. Открытие силы всемирного отталкивания. Тёмная энергия и её влияние на массу Вселенной по мере её расширения. Природа силы Всемирного отталкивания. Обнаружение планет возле других звёзд. Наблюдения за движением звёзд и определения масс невидимых спутников звёзд, возмущающих их прямолинейное движение. Методы обнаружения экзопланет. Оценка условий на поверхностях экзопланет. Поиск экзопланет с комфортными условиями для жизни на них. Поиски жизни и разума во Вселенной. Развитие представлений о возникновении и существовании жизни во Вселенной. Современные оценки количества высокоразвитых цивилизаций в Галактике. Попытки обнаружения и посылки сигналов внеземным цивилизациям.

- Узнать, как благодаря развитию астрономии люди перешли от представления геоцентрической системы мира к революционным представлениям гелиоцентрической системы мира. Как на основе последней были открыты законы,
- Как на основе последней были открыты законы, управляющие движением планет, и позднее, закон всемирного тяготения.

 На примере использования закона всемирного тя-
- готения получить представления о космических скоростях, на основе которых рассчитываются траектории полётов космических аппаратов к планетам. Узнать, как проявляет себя всемирное тяготение на явлениях в системе Земля—Луна, и эволюцию этой системы в будущем.
- Узнать о современном представлении, о строении Солнечной системы, о строении Земли как планеты и природе парникового эффекта, о свойствах планет земной группы и планет-гигантов и об исследованиях астероидов, комет, метеороидов и нового класса небесных тел карликовых планет.
- Получить представление о методах астрофизических исследований и законах физических, которые используются для изучения физически свойств небесных тел.
- Узнать природу Солнца и его активности, как солнечная активность влияет на климат и биосферу Земли, как на основе законов физики можно рассчитать внутреннее строение Солнца и как наблюдения за потоками нейтрино от Солнца помогли заглянуть в центр Солнца и узнать о термоядерном источнике энергии.
- Узнать, как определяют основные характеристики звёзд и их взаимосвязь между собой, о внутреннем строении звёзд и источниках их энергии; о необычности свойств звёзд белых карликов, нейтронных звёзд и чёрных дыр. Узнать, как рождаются, живут и умирают звёзды.
- Узнать, как по наблюдениям пульсирующих звёзд

цефеид определять расстояния до других галактик,			
как астрономы по			
наблюдениям двойных и кратных звёзд определяют			
их массы.			
• Получить представления о взрывах новых и сверх-			
новых звёзд и узнать как в звёздах образуются тяжё-			
лые химические элементы.			
• Узнать, как устроена наша Галактика — Млечный			
Путь, как распределены в ней рассеянные и шаро-			
вые звёздные скопления и			
облака межзвёздного газа и пыли. Как с помощью			
наблюдений в инфракрасных лучах удалось проник-			
нуть через толщу межзвёздногогаза и пыли в центр			
Галактики, увидеть движение звёзд в нём во-			
кругсверхмассивной чёрной дыры.			

СОГЛАСОВАНО

Протокол заседания методического объединения учителей физико-математического направления СОШ № 16 от 31.08. 2023 года № 1 _____ Калайда Н.Г.

СОГЛАСОВАНО

Заместитель директо	ра по УВР
Черн	енко Г.В.
2023	3 года